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ANALYSIS OF MAXIMUM RANGE TRAJECTORIES

FOR ROCKET-PROPELLED LUNAR FLYING VEHICLES IN

A UNIFORM GRAVITATIONAL FIELD

By A. Gary Childs and Ernest S. Armstrong

Langley Research Center

SUMMARY

The problem of obtaining maximal-range soft landing trajectories for a thrust-

limited rocket having a prescribed amount of fuel under the assumptions of planar flight

subject to uniform gravitational acceleration and negligible aerodynamic forces is ana-

lyzed through the Pontryagin maximum principle and the Davidon method of minimization.

Bounds on the rocket thrust magnitude are treated parametrically. Nondimensional

curves are given for calculating extremal trajectories for a wide range of vehicle designs.

Least-square approximate equations linear in the ratio of final mass to initial mass are

presented for control parameters which may be used to determine extremal control time

histories completely. These equations could therefore be useful in analytical design

studies, for example, those for which data are needed on maximum attitude angle, maxi-

mum attitude rates, and so forth.

For zero lower thrust bound cases in which the extremal range is short because of

the use of small amounts of fuel, the solutions approach impulsive results. Also, for

zero lower thrust bound cases having short burn periods, it is shown that the results of

the maxii-num principle for variable thrust direction may be closely approximated by use

of a constant thrust direction over the thrusting intervals.

INTRODUCTION

Rocket flight may become a very practical method for traveling over the lunar sur-

face. Numerous rocket-propelled flying vehicles have been proposed for transportation

in the vicinity of the moon. A study of such vehicles is presented in reference 1. In the

design and use of these vehicles, it is desirable to know the longest range attainable by a

given rocket for a prescribed amount of fuel. Accordingly, this report analyzes thrust-

limited rocket trajectories which maximize the range traveled for a given amount of fuel

and negligible aerodynamic forces. Since men or fragile instruments may be onboard

the rocket, a soft landing constraint is imposed on the trajectories; that is, the final

velocity and altitude of the rocket must be close to zero. The study considers planar



trajectories which have sufficiently low altitude and short range to insure that gravita-
tional acceleration may be assumed to be constant and the curvature of the moon’s surface
may be neglected. The dynamic equations are nondimensionalized and the optimal thrust
control law is determined by use of the Pontryagin maximum principle. Bounds on the
thrust magnitude are treated parametrically.

Problem formulations such as described, that is, problems concerning a thrust-
limited rocket with the simplifying assumptions of planar flight subject to constant gravi-
tational acceleration and negligible aerodynamic forces, form a fundamental and important

class in the study of trajectory analysis. Trajectory optimization problems such as,
thrust law for minimum fuel, maximum range, or minimum time using this model have

been frequently discussed in the literature. (See refs. 2 to 8.) However, the purpose of
these discussions has, in general, been only to give qualitative results. The purpose of
this report is to give quantitative results which will be useful in guidance studies.

The analysis presented may be considered a generalization of the similar quantita-

tive study by Manci (ref. 9) who considers a minimum fuel-fixed range problem with the

same dynamic model and the same assumptions as this study but with a zero lower thrust

bound. The generalization follows from the parametric treatment of thrust bound (which
allows zero lower thrust bound as a special case) and the duality that exists between the

minimum fuel-fixed range problem and the fixed-fuel-maximum-range problem. The

analysis presented also differs from reference 9 in that, for zero lower thrust bound

cases with short thrusting periods, comparisons of optimal performance are made between

solutions in which the thrust direction is held fixed over the thrusting intervals and solu-

tions in which the thrust direction is allowed to vary.

SYMBOLS

A 1 + Q’22

A Q?i P(mo + mf)J + P(m^ m^ + t^)
B -2(al + a2a3)

B PQ(p2 Q2)

C cr 2 + a 2
1 j

C P^nTf nTo) + ino m^ ti] + P^t^ + PJQ^mo m^) + Q2^ TOO + ti)1 Q3^

c effective exhaust speed
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D,E,F,M,N arbitrary constants in equation (15)

f W^[x(-tf)] -i- Wg^Cfc^ + Wg^tf)]
f p c0^ + p ^^Ji. p (switching function)

m l m

f (t~) value of fg obtained from lim fg(x)
x-t
x<t

g constant gravitational acceleration

H -p^ . p^ . p,(^) . p,? . p,(l^ l) p^

m mass

"^n \
P loge

\mo t^
p. Pontryagin auxiliary variables (i 0, 1, 5)

/ mf \
Q log --^-

\mo ’-I/

s dummy variable

T thrust

t time

t^,t2 switching times

Wf final weight

WQ initial weight

w^ weights for f (i 1, ., 3)

x downrange distance

y altitude

3



"I (Pi4-l())n (i 1’ -? 3)

0 angle thrust vector makes with approaching horizon

01 ,02 constant attitude angles

cp(s) As2 + Bs + C

;
Subscripts:

f final

max maximum

min minimum

n normalized (divided by -py)

o initial

Operations:

(~) nondimensionalized

() differentiated with respect to time (that is, with respect to t

or t, whichever is appropriate)

(") twice differentiated with respect to dimensional or nondimensional time

DYNAMIC EQUATIONS

The coordinate system chosen for the problem is given in figure 1. Downrange

distance is x, altitude is y, the thrust magnitude is T {Train ^ T ^ fmax)? and the

thrust angle is 6. The dynamic equations for the stated problem are based on the

assumption that the rocket is to be launched from rest at t 0 and is required to per-

form a soft landing at t tf, and are (ref. 10):

4



^,

x T ^s e (x(0) 0; x(0) 0; x(tf) o)

y T^1-0 g (y(0) 0; y(0) 0; y(tf) 0; y(tf) o) (1)

m ^ (m(0) mo; m(tf) mf)̂
/

where

mo known initial mass

mf known terminal mass

c effective exhaust speed of rockets

g constant gravitational acceleration

and x(tf) is to be maximized. As in reference 9, equation (1) may be nondimensional-

ized by

Length Length(s-}
\c2/

/ g \
Mass Mass

\Tmax/

ThrusT Thrust

Tmax

Time Time^)
The bars indicate nondimensional quantities. The nondimensional equations corre-

sponding to equation (1) are

^ T_cos_0 (x(O) O; x(0) 0; x(tf) o)
m

y T sm e 1 (y(0) 0; y(0) 0; y(tf) 0; y(tf) o) (2)
m

m -T (m(0) mo; m(tf) mf)

5
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where
T’min g ^-g ^Tmax

The (’) and (") notations are used for differentiation with respect to nondimensional time

as well as with respect to dimensional time. Only solutions with positive altitude are

considered.

OPTIMAL CONTROL

Equations of Optimal Motion

Pontryagin’s maximum principle (ref. 11) was applied to the foregoing maximum

range problem with the stated equations and boundary conditions. The maximum princi-

ple is a necessary condition which the control of a problem must satisfy in order to be

optimal. The controls of the problem are the thrust magnitude T and attitude 0. The

quantity to be optimized is the range xftA The maximum principle states that the con-

trols which minimize the negative of the range (that is, maximize the range) will be the

same as those which maximize

H -^ . p^ . P^^). P,? .^(^ l) ^
for every t with the auxiliary variables p^ (i 0, 1, ., 5) given by

PO (PO ^ ) (3)

PI 0 (Pl(tf) 0) (4)

P2 PQ PI <5)

p3 0 (6)

P4 -P3 (7)

:6

P5 ^(Pg cos e + ?4 sin 6) W

The principle also states that when H has been maximized, it will be zero for all t.

The part of H that involves T is

T’/n cos n sin e r^ Tf I1 ?9 -=- + PA PF> ’-^S
\/ m m "y
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where fg is called a "switching function." It is clear that no matter what value 6

assumes, the T which maximizes H will be (ref. 11)

n fs^)> o^
^^Im^ fs(t)< 0 ^ (9)

rpIJ-max J

For t > 0 so that fs(t) 0, T(t) takes the value given by equation (9) determined from

the sign of fs(t~).
It will be subsequently demonstrated that fg(0) > 0 and singular arcs (where

fg(t) 0 over a nonzero time interval) cannot occur. Thus the maximum principle

asserts that the engine thrust is either fully on (T Tmax) or at its lowest value

(T Tmin)- The zeros of fs(t) corresponding to transitions between T l (T T^ax)
and T T’min/’^’max (T "^in) are called "switching times."

In order to determine the thrust attitude, that part of H involving 0 is examined.

The terms containing 6 are

==(p<) cos 0 + PA sin 0\

The terms in parentheses may be considered as the inner product

/?2\ /cos ^w l8111 0/

To maximize this product it is necessary to choose the unit vector f^8 ] to have the
\ sin /

/Po\
direction of thus,

/<os\ / ^ \{ \ \^t\
(10)

?4\ sin Q \ \ \

\ ) ’^^1From equations (4) to (7),

Pl(t) Pl(1-i) o

Pg(t) P^O) + PQ~t

7
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p3(t)= pg(0)

P4(t) P4(0) P3(0)t

From equation (3) pr> is a nonpositive constant. If pr> were zero, then po(t) would

be constant and cos 6 would have the same sign for all t. However, physically it is

known that cos 6 must be positive along some portion of the trajectory (in order to

achieve positive range) and negative along the terminal portion (in order to achieve a

soft landing). Therefore, p., must not be zero and pg(0) > 0. Since only positive

altitude solutions are considered

sin 0(0) > 0

or

P4(0)----4----- > 0

^(O) + P42(0)

whereby p^O) > 0. If P^t), P3(t), and p4(t) are divided by -PQ neither e(t) nor

the switching times are changed and the equations for po^t) and P4(t) may be

expressed in terms of three rather than four constants:

P2,n(t) a’l t (11)

P4,n(t) a3 a2t <12)

where

P2(0)
"I -PO-

P3(0)
O’o -po

P4(0)
0’Q3 -PO

An n subscript means that the equations have been normalized by -PQ.

Next consider the determination of the switching times. Differentiating fg ^
by

using equations (2), (8), (10), (11), and (12) gives

8
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-(P2^ cos 0 + p4^ sin e)
fs,n -------^------- (P2,n cos 6 + p^ sin 0)^ p^

^k n^ ndt

=m(T)

^ At
(13)

m(t)^(t)
with

A 1 + cr^2
B -2(o^ + Q’2Q-3)

C Q’ 2 + a 2

and

(,o(t) At2 + B~t + C

Since the numerator of fg ^(t) is linear in t, fg ^(t) can have at most one zero. By

Rolle’s theorem from elei-nentary calculus, fg ^(tj can have at most two zeros. Since

A > 0, singular arcs cannot be optimal.

The condition H 0 at t 0 gives

T"(0)fs,n(0) "3 0

and implies

fs,n(0) "3 (14)

Thus fg n(t) is determined by the differential equation (13) with initial condition (14).

Suppose now that a set cq (i 1, 2, and 3) is found which yields a trajectory having
positive altitude and satisfying the fuel constraint

nT(tf) Hf

9
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A set cri (i 1, 2, and 3) satisfying the positive altitude condition may be found by

either trial and error or by the use of impulsive results. The fuel constraint can be

satisfied by using

m{Tf) m-^
to determine tf. The first switching time TI (if it should occur) may be sought by

use of differential equation (13) for the switching function fg ^(t). With T 1 and

nr(t) mo t, equation (13) can be integrated in closed form over fo,tij by making use

of the indefinite integral (ref. 12)

fas^ Es ^ ^l^^^ 1^)- 130!og [B ^As ^VA^s)]}J (Ms +N)^(sV M ^ 2AVA eL J)

FM2 NME + DN2 ^M^CM BN + (BM 2AN)s 2 ^AN2 + CM2 BMN)y(s)J ^’’M^ANa +CMS- BMN
1056 1 Ms + N j

(M^ O)- (15)

where (p(s) As2 + Bs + C. This operation yields

2C + Brno + (B + 2Am"o)^i + 2\ (p^mo)CP(tl}

^ a- + Amg nTn ’1
fg n(ti) Q’o + "-==^ log,, --------------1S5I1V 1/ 0 ^3 e 2C + Bmo + 2^(mo)C

mo

B + 2Ati + 2W\.^fti )VA logg -----x v 1/ (16)
B + 2 ^AC

where fg ^(0) oiy has been employed. Then TI is the first positive real root of

f n(ti) ’0 in the interval [o,mo nTf] which may be found with Newton’s method from

numerical analysis. If no such root occurs in the interval |_0,mo n-ifj, the rocket con-

tinuously burns with T 1 until the allotted fuel is consumed.

When "EI occurs, a second root tg ^ ti may exist. For the T^in 0 case,

t? has a simple relation to ti. Since mass is constant over (ti,t2 integration of
-i -J

equation (13) over ti^gj yields

10



________rTg
/^ ^ ^ n^ -’- ^ n^)

^^^-^^ ^(lij421-^
and ^nC^ ^nCy 0 S1^8

P2,nCt2) + P4,n(t2) P2,n(il) + ^l)
Substituting for pn and PA from equations (11) and (12) gives, for tg different

from t^,
2/cr., + Q’n0’o’\

7 B T \ 1 "/ T /T7\

^ -A- ^ ----o- t! (1()
A 1 + o’g"

From to ti > 0 and equation (17),

cr, + o’nQ’o

tl <
1 ^22

This inequality is useful for applying Newton’s method to equation (16). For T^^ ^ ’equation (15) may again be applied to integrate equation (14) (with T Tmin/Tmax) with

m(t) "m(ti) -""Lp ti) over ftptal to obtain
i max -j

(- \ (-, \ BM 2AN
^^W fs,n^,tlJ+ --.^====^===

2MVAN2 + CM2 BMN

2CM2 BMN + (BM2 2AMN)t2 2MJ(AN2 + CM2 BMN)(p(t-^
^2)x logg -------------------^-L--^^^^^^^^^==^-

2CM2 BMN + (BM2 2AMN)ti 2Mx/(AN2 + CM2 BMNWti)
Wi) 1

Aog ^^^^gg (,8)
M e B + 2At^ + 2}jA(p(t^\

11



where

fs,n(tl) 0

MHo t^^ ti-max

M= Tm^-
Tmax

By Newton’s method, tg can be found as the real root, ~k^ > t^, of

fs,n(t2) 0

with fg n(^2) g^s11 by equation (18). Trajectories in which t^ and tg exist are com-

posed of three subarcs initial and final subarcs with T 1 and an intermediate sub-

arc with T Tmin/Tmax-
For positive altitude trajectories satisfying the fuel constraint, a single root of

equation (16) can occur only when fg ^(t) has a minimum at t]^. In this event the tra-

jectory is composed of one arc obtained by using T(t) 1 for tC 0,tf where

tf mo m^.

For trajectories composed of three arcs, m\t) has the form:

m(t) mo t (^t0’"1!)) (19)

^^-T^ ^) (M^]) (20)

m(t) m(t2) (t tg) (^(^tf]) (21)

so that

mf m(-tf) ^ + (mo -ti) ^(-t^ t^) -tf

The final time is then a function of the known quantities nio; m^-, t]^? and t2 by the

equation

tf (mo mf) + (^ ti) ^^ (^ ti) (22)

With m\t) given by equations (19) to (21) and p? (tj and p< (t) given by

equations (11) and (12), the equations of motion for tc[b,tf[ have solutions

12



/^ / \ / \- ("t (l ^f0’-! s}x(-t) x to) + (t to)x(to) + ^ ds (23)
to m(s)\Ms)

/-\ /- \ r^ ^(’Q’I s’)x(t) x(to) + ^ 1 / ds (24)
v o/ J-to m^V^s)

_/-\ _/- \ /- \- /- \ ( t/- \ T(Q’:i 0’2S)y(t) y(to) +(t to)y(to) + (t s) _j / l ds (25)
^o m(s)V<y?(s)

/-^ /- \ p t TVo’, ayS\y(t) y(to) + 1 ^ 1 ds (26)
^to m(s)\/<p(s)

where

to 0 ^1

T l ^tc[o,tl] (27)

m(s) mo sj

-^

to ti

T ^ > -tc(ti,-t2] (28)
max -’

-m(s) nTo ti Tm^(s ti)--max ^and

to "t2
T 1 >tc(t2,tf] (29)

nT(s) mo ti ^(-ta -ti) (s -t^)
’max

For a trajectory possessing three arcs, closed-form solutions of equations (23) to (26) can

be obtained by the successive application of equation (15). For a single maximal thrust

arc, only equation (15) and equations (23) to (26) with

13



m(t) mo t (’tcR^mo mfl
are needed.

The Optimal Control Law

The optimal control law for maneuvering the vehicle described by equation (1) from
launch to a soft landing while using a given amount of fuel and maximizing the range is

given by equations (9) and (10). Of course, synthesis of the control law requires equa-

tions (11) to (29). For positive altitude, the extremal trajectories either are composed

of one maximal thrust arc or three arcs generated by the thrust sequence:

(1) A maximum thrust period from t 0 to t ti (the first switching time)

(2) A minimal thrust period from t t^ to t tg (the second switching time)

(3) A maximal thrust period from t tg to the final time tf.

Once a set of constants a^ (i 1, 2, and 3) which generates a trajectory having

positive altitude and satisfying the fuel constraint has been found, a procedure has been

indicated for constructing the corresponding trajectory. Zeros of equations (16) and (18)
(obtained numerically) provide switching times. Either equation (22) or tf mo m^
determines the final time. Once this information has been given, closed-form solutions

of equations (23) to (26) which completely specify the trajectory can be obtained with the

aid of equation (15). There is however no guarantee that the given trajectory will satisfy

the soft landing conditions. In general, it should only possess positive altitude and satisfy

the fuel constraint. The next section details a procedure for correcting the given con-

stants 0’i (i 1, 2, and 3) to meet the soft landing conditions.

Determination of Corrected Constants

The integrated form of equations (24) to (26) evaluated at tf yields equations for

y(tf), x(tf), and y(tf) explicitly in terms of the 0’i (i 1, 2, and 3). Setting these

equations equal to zero gives a system of equations in a^ which satisfy the soft landing

conditions. This system can be solved by minimizing to zero with respect to the

fflj. (i 1, 2, and 3) the function

f(o4,Q’2,a3) Wi[x(tf)] + W2[y(.tf)J + W3[y(tf)j (30)

where w- Wo, and Wo are positive weights. Constants 0’i (i 1, 2, and 3) which

cause i(a-^,a^,a^\ to vanish and generate trajectories satisfying the fuel constraint are

the type desired.

14



In the sections to follow, examples of the results obtainable from the foregoing anal-

ysis are presented. In all cases it was found that an initial set of a^ (i 1, 2, and 3)
satisfying the altitude and fuel constraint could be easily obtained. The value of

f(Q’i ,Q’9,Q’o) given by equation (30), with weights Wi 10"^, Wo 10^, and wq 10~3,
was iteratively minimized by use of the Langley Research Center Control Data 6600 digi-

tal computer and the Stewart modification of the Davidon method of minimization. (See
refs. 13, 14, and 15.) Rapid convergence was obtained to a set of constants o^ (i 1, 2,
and 3) satisfying all the required conditions. A representative computing time is 20 sec-

onds. A listing of the program employed is available from the authors at the Langley

Research Center.

RESULTS

The results obtained are of two types: nondimensional and dimensional. Nondimen-

sional results are completely general with respect to all g, c, and Tmax- Solutions

for a range of payload fractions nTf/nTo with initial mass as a parameter are found for

Tmin 0 ^d Tmin O.lTmax- Although both one arc and three subarc trajectories

may be extremal, no one arc trajectories were found which satisfied a.11 the necessary

conditions; only three subarc trajectories are presented.

Nondimensional Results

Nondimensional results are given in figures 2 to 8. Least-squares approximations

are made for the data points of figures 2 to 5. The equations for these approximations

are presented in appendix A.

Figure 2(a) shows the nondimensional range achievable with an extremal trajectory

as a function of payload fraction for three values of nondimensional initial mass (planet

take-off weight, divided by maximum thrust) when Tmin 0. The figure may also be

used to give the fuel required by a minimum fuel trajectory for a given range and initial
mf

mass. The fraction of initial rocket mass used as fuel is 1 =-. Note that the range
mo

increases with increasing initial thrust-weight ratio. The approximating curves for fig-

ure 2(a) are quadratic.

Figure 2(b) is the same as figure 2(a) except that Tmin O-lTmax- Tne nondimen-

sional range is less for given values of mo and m^/mo than when Tmin 0- Theo-

retically, this result is implied from the necessary conditions since if Tmin 0, then

T 0 for fg < 0 satisfies the maximum principle whereas T O.lTmax ^or ^s < 0

does not satisfy the maximum principle. Physically, gravity is apparently more efficient

than rocket thrust for the intermediate period of this type of trajectory. The lessening

15



of nondimensional range is greater for lower mo values. This result is reasonable

since a high thrust-weight ratio (lightweight) vehicle will "waste" a greater percentage
of its mass during the nonextremal (with respect to the "unconstrained" Tmin 0 prob-

lem) intermediate period. The approximating curves for figure 2(b) are quadratic.

Figure 3(a) shows "EI as a function of mf/mo for Tmin 0. If t^ is known,

t2 and tf may be computed from equations (17) and (22). From these results and

recalling that m"o is the inverse of the initial thrust-weight ratio, it is seen that a

larger thrust-weight ratio will not only produce a longer range but also a shorter (in

time) trajectory with a longer coast period for the same fuel fraction. The approximating

curves for figure 3 (a) are linear.

Figure 3(b) gives ti and ^ as functions of mf/mQ for Tmin olrTmax
Comparison with figure 3(a) reveals that for Tmin O.lTmax, the intermediate period

(ti,t9| is longer, but the entire period of flight |o,Tfj is shorter. When

Tmin O-^max, ^ue^ ls burned during the intermediate period and thus the initial and

final periods are forced to be shorter. It seems reasonable to state that if Tmin is

close enough to zero, the time lengths of the entire trajectory and of the intermediate

period would be close to those for Tmin 0. Thus, if the burn periods are shorter for

some value of Tmin, and if this value of Train is sufficiently near zero, the intermedi-

ate period should be longer than when Tmin 0. Also, for Tmin sufficiently near

zero, the entire trajectory should be shorter in time since all the periods (initial, inter-

mediate, and final) would be of about the same length as those for Tmin 0, but fuel

would be depleted more rapidly since Tmin ^ 0- ^e approximating curves for fig-

ure 3(b) are linear.

Figures 4(a), 4(b), and 4(c) show, respectively, a-i a^, and og as functions of

mf/m^ for Tmin 0- T^he approximating curves for figure 4 are linear. By using
o’o ffot

these curves and tan 0(t) -----, the approximate attitude may be calculated for

"1 t

any I. The parameters a-,, dy, and o’o increase with increasing fuel. Since a.,

increases more rapidly than does o’o, the initial thrust angle becomes smaller for

larger amounts of fuel (and longer ranges). Since cfp increases, for longer range

problems 0 will change more rapidly with time along the extremal trajectory. The

parameters cr., and o’o increase with m"o, but cfn decreases with increasing m"o
values. Thus, 6 is smaller and changes more rapidly when the rocket vehicle is

heavier or has a relatively small thrust.

Figures 5(a), 5(b), and 5(c) give, respectively, a. (Xy. and o’n as functions of

mf/m"Q with m"o as a parameter for Tmin 0-lTmax- A comparison with figures 4(a)
to 4(c) reveals that when Tmin ^^max? ’i is greater, cfg remains about the

same, and cfo is less. These changes should make cos 6 larger and sin 6 smaller

16



for all values of t. Thus, the values of Q (or after 0 90, the supplement of 0)
for Tmin 0-lTmax should be smaller than those for T^nin 0 f01’ a^ values of t

for which 0 ^ 90 once a time translation has been made to make the two 90 points

coincide. Therefore, the rocket is depending more on the thrust and less on gravity for

obtaining range than in the Tmin 0 case. This statement is reasonable since the

rocket can no longer gain as much potential energy from its shorter initial burn period or

dissipate as much kinetic energy with its shorter final burn period. The approximating

curves for figure 5 are linear.

For high thrust-weight ratio (nTo small) and large values of mjp/mo (between
0.95 and 1) trajectories are produced (for T^ain 0) which have short ranges and whose

properties approach those of impulsive cases. Figure 6 (variable attitude) shows non-

dimensional range as a function of mf/m’o for m’o 0.2. It is a magnification of the

high m’^/nTo portion of the curve in figure 2(a). Figure 7 shows for m’o 0.2 and

ra.t m.Q varying between 0.95 and 1 that maximum altitude increases linearly with range.

The slope of the line is about 0.225 compared with the analytically determined slope of

0.250 for the impulsive (mo o) case. (See ref. 9.) Other studies with mo > 0.2 indi-

cate that the slope decreases with increasing m’o. Figure 8 (variable attitude) is a graph

of t^, tg, and tf as functions of m^/m"o for m’o 0.2. The coast (T o) portion is

seen to be the predominant part of the trajectory. As m’o’ is further reduced, the

results approach the impulsive case in which the trajectory consists entirely of a coast

period with initial and terminal thrust impulses.

Also, for short-range problems, the rocket attitude changes little during the burn

periods. Since this condition was noted, a study was performed in which the attitude was

held constant over each burn period. In the study, the times t^, tg, and tf were

redetermined by taking into account the constant-attitude constraint. Appendix B sum-

marizes the analysis.

Figures 6 and 8 (constant attitude), respectively, give nondimensional range and ti,

tg, and tf as functions of m^/mo for constant attitude and m’o 0.2. These results,
for m^/niQ between 0.95 and 0.995, lie so close to those for the variable-attitude case

that any differences shown on the graphs might be attributable to an error in meeting the

soft landing conditions in the variable-attitude solutions. The constant-attitude solutions

satisfy these conditions exactly. Raw data indicate, however, that for constant attitude

the range is less. No clear trend is obtained for ti tg, and t^ from these cases.

Dimensional Results

Dimensional results obtained from the computer are presented for two vehicles on

the lunar surface. The lunar surface gravitational acceleration constant g is approxi-

mately 5.315 ft/sec2. The two vehicles are:
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(1) A two-man vehicle modeled after a configuration for the lunar-module ascent

stage with

Tmax 3507.7 Ib (15 603.0 N)

c 9853.2 ft/sec (3003.3 m/s)

WQ 10 500 Ib (46 706.3 N) (m^ 0.49)
Wf ^ 8600 Ib (38 254.7 N) f^- 0.82^

^o /

(2) A single-man vehicle proposed in reference 1 with

Tmax 275 Ib (1223.3 N)

c 9660 ft/sec (2944.4 m/s)

Wo 550 Ib (2446.5 N) (nTo 0.33)
/nTf \

Wf ^ 450 Ib (2001.7 N) =1 0 82
\mo y

Two-man vehicle.- Figure 9 illustrates dimensional results with Tmin 0. The

times ti tg, and tf may be dimensionalized from the values of t^, tg, and if of

figure 3(a), by using the before-given values of nTo and mf/m’Q, to give the thrust

history. The first burn period is of longer duration than the second. This difference is

explained by recognizing that the average mass of the rocket during the second burn

period is less than it was during the first burn period.

Figure 9(a) shows the 6 time history for extremal control. For Tmin O?
6 is undefined over the coast arc. Points of interest in figure 9(a) may be approximated

through the nondimensional results. The attitude of the rocket with respect to the near-

est horizon is 180 0 for 0 greater than 90. The attitude with respect to the near-

est horizon is seen to be approximately symmetrical for the two burn periods.

Figures 9(b), 9(c), and 9(d) give the trajectory achieved by the extremal control.

Any point on the trajectory may be found with equations (23) to (26). The extremal range

xftf) and maximum altitude are about 21 and 3^- nautical miles, respectively. The range
can also be obtained from figure 2.

One-man vehicle.- Figure 10 illustrates and compa.res dimensional results for

Tmin 0 an(^ Tmin O.lTmax- The intermediate period is longer, the two burn

periods are shorter, and the trajectory is shorter (in time) when Tmin O.lTmax
than when Tmin 0-

Figure 10(a) shows the 6 time history for extremal control. For

Tmin ^-ITmax? ^ ls g"^" by the bilinear tangent formula. For Tmin 0, Q is
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undefined over the intermediate period, but for comparative purposes with

Tmin 0-lTmax; ls plotted according to the bilinear formula for the entire period of

flight.

Figures 10(b), 10(c), and 10(d) show comparisons for Tmin 0 and

Tmin 0-lTmax ^or ^ne extremal trajectories. The range is shorter and the maximum

altitude is less when Tmin ^^’max- The ^"gs fo^ T’min 0 is about 23 nautical

miles whereas for Tmin 0.1Tmax> ^- is ^out 22 nautical miles. The maximum alti-

tude for Tmin 0 is about 4- nautical miles whereas for Tmin O.lTmax ^ is a100ut

3^ nautical miles. For Tmin 0, the horizontal velocity during the intermediate period

is constant, but when Tmin 0-lTmax the horizontal velocity climbs to a peak and then

falls to a value at tg comparable with its value at t^. The vehicle reaches a smaller

maximum and larger minimum vertical velocity during the trajectory when the rocket

engines are burning during the intermediate period.

CONCLUDING REMARKS

The problem of obtaining maximal range soft landing trajectories for a thrust-

limited rocket having a prescribed amount of fuel under the assumptions of planar flight

subject to constant gravitational acceleration and negligible aerodynamic forces has been

analyzed through the Pontryagin maximum principle and the Davidon method of minimiza-

tion. The problem was solved in nondimensional form with the bounds on thrust magni-

tude treated parametrically. Nondimensional plots were given to allow calculation of

extremal trajectories for a wide range of vehicle designs. Least-square approximate

equations linear in the ratio of final mass to initial mass are presented for control

parameters which may be used to determine extremal control completely. These equa-

tions could therefore be useful in analytical design studies, for example, those for which

data are needed on maximum attitude angle, maximum attitude rates, and so forth.

Dimensional results were given for lunar flights of a rocket vehicle modeled after the

ascent stage of the lunar module and a single-man vehicle proposed in NASA CR-365.

All "best extremal" solutions were found to have similar characteristics. Each

solution had an initial and terminal maximal thrust period separated by a single period

at minimal thrust. Thrusting was initially at some positive angle and the vehicle pitched

up as the initial thrust period continued. After the attitude angle had increased to 90
for nonzero lower thrust bounds or after the coast period for zero lower thrust bounds,
the supplement of the attitude angle descended a path nearly symmetric to that taken pre-

viously by the attitude angle. For zero lower thrust bound cases in which the extremal

range was short because of the use of small amounts of fuel, the’ solutions approached

impulsive results. Also for zero lower thrust bound cases having short thrusting periods,
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it was shown that the performance of extremal solutions with variable thrust attitude

may be closely approximated by solutions in which the thrust attitude is held fixed over

the burn portions of the trajectory.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Station, Hampton, Va., August 11, 1969.
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APPENDIX A

LEAST-SQUARES APPROXIMATION

Least-squares polynomial approximations were made to the data points of fig-

ures 2 to 5. Quadratic fits were made to the data of figures 2 (a) and 2(b) (range as a

function of mf/m’o) since these results showed an obvious quadratic tendency. Linear

fits were used for the data of figures 3 to 5 since either the results were close to being

linear or their variations from linearity took on no definite pattern so that a linear fit

was "as good as any." The data of figures 3 to 5 may be used to determine extremal

control completely so that the "be’st" linear fits might be useful in the analytic design of

a simple suboptimal system. The equations for the approximating polynomials are:

For figure 2(a):
/- \2

mf mf \ /__ \
Range 0.30256 0.61506 =- + 0.31284 ^ (mo 0.2)

mo \mo/

/- \2
mf mf \ ,_ \

Range 0.27241 0.55611 =- + 0.28413 ^- (mo 0.4!
mo \mo/ v

/- \2
m.f va.f \ ,__ \

Range 0.24394 0.50028 ^ + 0.25688 ^- (mo 0.6;
"^o V^o/

For figure 2(b):
/_ \2

mf mf /_ \

Range 0.26854 0.54531 ^ + 0.27705 =- [mo 0.2)
mo \mo/

^ /^ \2

Range 0.26440 0.53946 mf- + 0.27548(^1 (nTo 0.4)
mo \mo/

/- \2
mf mf \ /_ \

Range 0.24195 0.49606 =- + 0.25463 =^- (mo 0.6)
mo \mq/

For figure 3(a):

ti 0.10634 0.10666 ^f- (m’o 0.2)
mo

ti 0.21646 0.21739 ^- (mo 0.4)
mo v
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APPENDIX A

ti 0.33599 0.33820 mf- (nTo 0.6)
mo

For figure 3(b):

ti 0.07348 0.07358 m^- (mo 0.2)
mo

ti 0.19178 0.19242 mf- (mo 0.4)
mo

ti 0.32021 0.32205 ^f- (mo 0.6)
mo

to 0.72527 0.72961 mf- (mo 0.2)
mo v /

to 0.67959 0.68580 ^f- (nTo 0.4)
mo

mf /_ \

to 0.62877 0.63763 =- (mo 0.6)
mo

For figure 4(a):

m"f /_ \

a. 0.41055 0.41279 =- (mo 0.2J
1 mo ’

mf /_ \
a. 0.43161 0.43463 =- mo 0.4)

1 mo v

a. 0.45551 0.45965 mf- (nTo 0.6)
1 mo

For figure 4(b):

cc, 0.04901 0.04994 mf- (mo 0.2)
mo v /

mf /_

o’. 0.11675 0.11761 (mo 0.4)
i mo \ /

an 0.25434 0.25323 =^ (ino 0.6)
mo ’
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APPENDIX A

For figure 4(c):

Cf, 0.38492 0.38721 mf- (mo 0.2)
0 mo v

cr, 0.37924 0.38253 mf- (mo 0.4)
mo v

o’q 0.37934 0.38444 mf- (nTo 0-6)3 mo v /

For figure 5(a):

01. 0.39958 0.40178 mf- (mo 0.2)
1 mo

nTr /_ \

a. 0.42820 0.43120 =~ (mo 0.4)
1 mo v

0!, 0.45401 0.45809 m- (m’o 0.0)
1 mo

For figure 5(b):

dy 0.08132 0.08458 ^f- (m’o 0.2)
mo v /

m,.

Q!<, 0.11943 0.12043 =- (mo 0.4)
mo

m"f \

Q!, 0.25498 0.25390 =- mo 0.61
nio

For figure 5(c):

mr /_ ^ao 0.29823 0.29957 (mo 0.2)6 mo

m< /_

a, 0.35315 0.35593 =- (nio 0.4)
mo v

mr ,_ ^a, 0.37116 0.37594 =- (mo 0.6)
mo /
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APPENDIX B

CONSTANT-ATTITUDE STUDY

This section outlines an analysis of the optimal trajectory problem of this report

with the added assumptions that the optimal trajectory is composed of two maximal thrust

arcs separated by one coast arc and that the thrust attitude 6 is held constant over the

thrusting periods. By defining 0\ and Q^ to be, respectively, the fixed attitudes over

the initial and terminal burn periods, equations (2) may be integrated and the conditions

x(tf)= 0

y(tf) 0

y(tf) 0

nT(tf) mf

applied to determine the unknowns tg, tf, 0^, and 63 in terms of the single unknown

"EI. This procedure yields

B ^B2 4AC (BI)
2A

tg tf (m"o 5y + ti (B2)

P2 Q2 tf2
sin 6>1 (B3)

2Qtf

P2 Q2 + tf2
sin 0o ----=-- (B4)

2Ptf

where

m’0
P iogg -=----mo t^

m’..
Q log

mo tl
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APPENDIX B

and

A Qfti P(mo + mf)1 + P(nTf nip + t^)

B PQ(P2 Q2)

C P^Q^ mo) + nTo m^ ti] + P^’ti + pfo3 (nTo m^) + Q2 (mf Im^ + ti)] Q3^

The value of ti which maximizes x(tf), if equations (Bl) to (B4) are known, can then

be found by scanning the allowable values of t^ (0 < t^ < TOO nTf) and observing x(tf).
After determining ti, the complete trajectory may be constructed by use of equa-

tions (Bl) to (B4) and the solutions of equations (2).
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Figure 1.- Coordinate system for "flat" surface maximum range problem with thrust components, magnitude T and attitude 0.
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Figure 2.- Nondimensional range as a function of the ratio of final mass to initia! mass Trif/mo with nondimensional initial mass ’ifio as parameter.
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Figure 3.- First switching time ti, second switching time t->, and final time t^ as functions of the ratio of final mass to initial

mass TRf/TRo with nondimensional initial mass Trig as parameter.
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Figure 4.- Unknown parameters a-i, no, and 03 as functions of ratio of final mass to initial mass nWmo with nondimensional
initial mass ’m^ as a parameter for T^jp 0.
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Figure 9.- Optimal control and trajectories. Wo 10 500 Ib (46 706.3 N); Wf 8 600 Ib (38 254.7 N); Tmax 3 507.7 Ib (15 603.0 N);

Tmin 0 Ib (0 N); c 9 853.2 ft/sec (3 003.3 m/s).
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Figure 10- Optimal control and trajectories. Wo 550 Ib (2446.5 N); Wf 450 Ib (2001.7 N); Tmax 275 Ib (1223.3 N);
c 9660 ft/sec (2944.4 m/s).
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